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General Introduction 

AD is a devastating age-related neurodegenerative disorder, and the most frequent cause 
of senile dementia(1). The appearance of cognitive decline is associated with accumulation of 
misfolded proteins, as well as the presence of several additional toxic processes (2). Among the 
common neuropathological features found in AD are synaptic and neuronal loss, intracellular 
neurofibrillary tangles, elevated levels of the toxic form of amyloid beta (Aβ) (1–42), and the 
accumulation of extracellular senile plaques containing misfolded Aβ peptide (2-4). Local 
inflammatory responses as well as overwhelming astrocyte reactivity are often observed in the 
brains of AD patients and in rodent models; these processes are not necessarily the primary causes 
of the disease, but are considered to be key factors in disease progression and escalation (5-7). The 
accumulated misfolded proteins and the neuroinflammatory component have led to numerous 
attempts over the years to arrest disease progression, either using treatments that are directed 
against the misfolded proteins to arrest plaque burden (8, 9), or using systemic anti-inflammatory 
drugs to arrest the brain inflammation. Inconsistent and even conflicting results were reported, and 
none of the drugs tested thus far have proven effective in reversing or arresting cognitive loss in 
patients (10-16).   

The failure of treatments directed at Aβ to arrest cognitive loss or to reverse it could reflect 
the fact that by the time Aβ plaque burden is high, removal of plaques, while still important, may 
be insufficient to modify disease because of numerous collateral disease-escalating factors that 
enter into a vicious cycle, which continues even after the plaques are removed. Such factors might 
include those whose mitigation is dependent directly or indirectly on the immune system. In 
apparent support of such a model are the results suggesting that resolution of inflammation requires 
an active mechanism mediated by circulating immune cell recruitment to sites of brain pathology 
(17-19).  

 
Systemic leukocytes are essential players in CNS repair 
 
For decades, it was commonly believed that the brain, and the CNS in general, is unable to tolerate 
immune cell entry, mainly due to the understanding that the brain is a tissue behind barriers, and is 
viewed as an immune privileged site (20). In animal models of acute CNS injuries, both monocyte-
derived macrophages and CD4+ T cells recognizing brain antigens, are needed for coping with and 
helping heal parenchymal damage (21-28). Moreover, T cells present in the periphery facilitate 
recruitment of the monocyte-derived macrophages to the CNS, and such macrophages play a role 
in supporting neuronal survival and facilitating axonal growth by resolving the local inflammatory 
response through their production of IL-10, and degradation of the local scar by metalloproteinase 
secretion (25-27, 29-32). Additional studies revealed that systemic T cells not only participate in 
CNS repair, but are also needed for life-long brain plasticity (33-35).  
In investigating how T cells support healthy brain plasticity while they are excluded from the brain 
parenchyma, how they facilitate recruitment of monocyte-derived macrophages, and how such 
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monocytes can gain access to the CNS without breaching the blood-brain-barrier (BBB), it was  
demonstrated that the brain’s barriers, including the meningeal barrier (36, 37) and the epithelial 
cell layer (CP) within the BCSFB, can serve as key compartments for immune-brain crosstalk in 
health and disease (19, 38, 39). This finding, coupled with unique epithelial composition of the 
BCSFB relative to other CNS barriers, comprised of endothelial tight junctions (40-43), and the 
accumulated evidence that immune cells are needed for brain maintenance and repair, led us to 
discover that the blood-CSF-barrier is a physiological restrictive gate that enables selective immune 
cell access, depending on the needs of the CNS (19, 38). 
 
The paradoxical fate of the “leukocyte gate” to the brain in Alzheimer’s disease models 
Several independent studies have shown that recruitment of circulating monocyte-derived 
macrophages (44-52), possibly together with that of additional immunoregulatory leukocytes,  can 
modify AD pathology (31, 53, 54). Such cells can help remove misfolded protein such as Aβ-
plaques (48, 55, 56), balance the local inflammatory milieu (46, 47, 57), reduce gliosis (58), and 
protect synaptic structures (46, 57, 59).  

Analyzing the fate of the CP with respect to its ability to support leukocyte trafficking, it 
became clear that its activity is impaired in brain aging and in animal models of AD (60, 61). It 
was further discovered that transiently reducing systemic immune suppression in AD animal 
models, by depleting peripheral Foxp3+ regulatory T cells, augments IFN-γ activity in the 
circulation as well as its availability at the CP, and has a beneficial effect in mitigating disease 
pathology (62). These results are consistent with an independent observation, showing that the 
adaptive immune system plays an important role in AD etiology; it was demonstrated that genetic 
ablation of B, T, and natural killer cells in the 5XFAD mouse model by crossing these mice with 
Rag2/Il2rc double knockout animals (Rag-5xFAD), results in increased plaque load and increased 
soluble Aβ levels (63).  

Importantly, although immunoregulatory and anti-inflammatory cells are needed in the 
brain parenchyma as a source of anti-inflammatory cytokines for reducing the inflammatory 
response, their homing to the brain requires well-controlled boosting of systemic immunity, to 
enable opening of the gateway to the CNS. Therefore, special care must be taken when viewing 
immunosuppressive cells (such as FoxP3) as uniformly beneficial or harmful in neurodegenerative 
diseases, without regard to their localization and kinetics. 

Taken together, the results summarized above created the basis for our approach of 
empowering the systemic immune system, by transiently blocking inhibitory immune checkpoints, 
to thereby drive a cascade of immunological events that start outside the brain, induce activation 
of the CP, and culminate in immune-dependent brain repair processes (61, 64).  
 
Immune checkpoint blockade for mitigating AD pathology 
 
Inhibitory immune checkpoints restrain the activity of memory T cells, mainly those directed 
against self-compounds, to avoid autoimmune diseases. Among such checkpoints are the 
Programmed cell death protein 1 (PD-1), a member of the B7-CD28 family, expressed by a variety 
of activated effector memory immune cells, including CD4+ T cells (65). The PD-L1 ligand is 
expressed by dendritic cells and regulatory T cells (66), as well as by non-immune cells such as 
endothelial and epithelial cells (67, 68), and astrocytes (66). The interaction between PD-1 and its 
PD-L1 ligand suppresses memory T-cell responses, including proliferation, and cytokine 
production (65, 69). Blocking the PD-L1/PD-1 pathway potentially results in an increase in T cell 
activation (70-72). Based on our new understanding that boosting of systemic immunity in a well-
controlled manner can help fight against AD, we envisioned that targeting PD-1/PD-L1 might be 
an effective means to achieve such immune activation. Our studies using anti-PD-1 or PD-L1 
antibody in the 5XFAD mouse model of AD as well as in a dementia model of tau pathology 
revealed that such treatments are effective in boosting levels of IFN-γ producing T cells, with a 
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consequent dramatic effect in mitigating cognitive decline and disease pathology. This process was 
associated with recruitment to the brain parenchyma of monocyte-derived macrophages (61, 62). 
Such monocytes locally express numerous molecules that can act as scavenger receptors for 
removal of misfolded or aggregated protein, promote an anti-inflammatory effect, and serve as a 
source of growth factors (61, 64). Importantly, while the effect on brain pathology was extremely 
robust, it did not require continuous administration of the treatment; thus, a single injection of 
antibody initiated a chain of events that started outside the brain and led to alterations in several 
processes within the brain that together resulted in disease mitigation. It takes approximately 1 
month from the initial administration of antibody for such effects to be manifested (64).  
 
In this report, we describe our studies regarding the mechanism by which targeting the PD-1/PD-
L1 pathway in a mouse model of tau pathology enhances recruitment of monocyte-derived 
macrophages to the brain parenchyma, and present the phenotypic characterization of the 
recruited cells.  

In both 5XFAD and J20 mouse models of AD, disease progression is associated with a reduction 
of CP expression of leukocyte-trafficking molecules (73, 74). Treatment of 5XFAD mice with anti-
PD-1 antibodies results in enhanced recruitment of monocyte-derived macrophages to the brain 
(61). These findings, together with our current results demonstrating a beneficial effect of anti-PD-
L1 in the DM-hTAU model of dementia (75), prompted us to test whether the observed beneficial 
effect of targeting PD-L1 on cognitive function and disease pathology in this tau mouse model was 
associated with enhanced trafficking of immune cells to the diseased brain. To this end, we first 
tested whether the administration of antibody directed against PD-L1 induced elevation of effector 
memory T cells in DM-hTAU mice. Analyzing the spleens of DM-hTAU mice 2 weeks after anti-
PD-L1 antibody administration revealed increased levels of effector memory T cells (TEM; 
CD44+CD62Llow) relative to those in IgG-treated mice (Fig. 1a, b), as evaluated by flow cytometry 
analysis. We further analyzed, by flow cytometry in the DM-hTAU mice, whether the treatment 
facilitated recruitment of monocyte-derived macrophages (CD45highCD11bhigh) to the brain 
parenchyma. We found a significant increase in CD45highCD11bhighcells in the brains of DM-hTAU 
mice treated with anti-PD-L1 antibody relative to those treated with the IgG2b isotype control 
(Fig. 1c, d). To confirm the lineage of these cells, which we classified as mainly monocyte-derived 
macrophages based on their high expression of CD45 and CD11b, we repeated this experiment 
with bone marrow (BM)-chimeric mice, in which the donor BM cells were taken from mice with 
GFP-labeled hematopoietic cells )76( . To create such chimera, recipient DM-hTAU mice were 
conditioned with lethal-dose irradiation, with the radiation beam targeting the lower part of the 
body while avoiding the head, prior to BM transplantation )25( . Following establishment of 
chimerism, animals were treated with either anti-PD-L1 antibody or with control IgG2b. Analysis 
of the brains 2 weeks after the administration of the antibody, by flow cytometry, revealed that 
among the CD45highCD11bhigh cells, about 50% of the cells were GFP+, which was consistent with 
the extent of the chimerism, and confirmed their identity as infiltrating monocytes, rather than 
activated resident microglia (Fig. 1e, f). No GFP+ cells were seen among the CD45lowCD11b+ cells. 
Notably, we gated only on GFP+CD45+CD11b+ myeloid cells; BM-derived cells that were 
GFP+CD45+CD11b- were not analyzed. Treatment with anti-PD-L1 antibody resulted in an 
approximately threefold increase in the frequency of GFP+CD45highCD11bhigh cells, relative to 
IgG2b-treated control (Fig. 1f). Notably, this number underestimates the number of homing 
macrophages, since the chimerism was only about 50%. The brains from other mice from the same 
experiment were excised and processed for immunohistochemistry, which revealed the presence of 
GFP+IBA-1+ myeloid cells in the cortex of the anti-PD-L1-treated mice (Fig. 1g). We also stained 
brain sections from the same animals for the anti-inflammatory cytokine, IL-10, and observed its 
co-localization with infiltrating monocyte-derived macrophages, but not with IBA-1+GFP-

microglia (Fig. 1h). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
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The overall number of monocyte-derived macrophages that infiltrated the brain was low, and the 
number of those that were GFP+ was even lower. Therefore, we further characterized the infiltrating 
cells by single-cell RNA-seq. We sorted all the CD45highCD11bhigh  cells from both IgG2b-treated 
and anti-PD-L1-treated groups, thereby enriching the monocyte-derived macrophages within the 
analyzed samples. Clustering analysis of 899 cells revealed that the infiltrating monocyte-derived 
macrophages were heterogeneous, and most likely included several activation states (as seen in 
clusters 5–10); clusters 1–4 represent activated microglia in several activation states, and clusters 
11–12 indicate neutrophils. Analysis of differential genes in each cluster highlighted a unique 
signature displayed mainly by clusters 5 and 6, distinct from the resident homeostatic or activated 
microglia (clusters 1–4); the unique signature was manifested by expression of several molecules 
that could potentially mediate an important function in disease modification (Fig. 1i, j). One such 
uniquely expressed molecule is the macrophage scavenger receptor 1 (Msr1) (also known as SRA1, 
SCARA1, or CD204), an important phagocytic receptor required for engulfment of misfolded and 
aggregated proteins (77, 78), and found previously by us to be expressed by M2-like infiltrating 
monocyte-derived macrophages that are needed for spinal cord repair (38). Notably, these 
macrophages expressed additional relevant functional molecules, among which are the insulin-like 
growth factor-1 (igf1) that was previously reported to enhance neurogenesis in the aged brain (79), 
lymphatic endothelium‐specific hyaluronan receptor (lyve1) and the scavenger receptor stabilin-1 
(Stab-1) (Fig. 1j), both of which are markers of anti-inflammatory macrophages, associated with 
wound healing and lymphogenesis (80). Additional genes, found here to be uniquely expressed by 
infiltrating monocyte-derived macrophages, are scavenger receptors such as the sialic acid binding 
Ig-like lectin 1 (Siglec1) and the mannose receptor C-type (Mrc1) (Fig. 1j). 

In light of the reported role of MSR1 in neurodegenerative diseases, we further focused on this 
scavenger receptor. Using immunohistochemistry, we confirmed the expression of MSR1 by the 
GFP+ (infiltrating) cells (Fig. 1k, l), in line with our previous findings (61). Finally, to gain insight 
into the functional impact of MSR1-expressing macrophages on the repair process, we created BM 
chimeric DM-hTAU mice, in which the BM of the recipient mice was replaced with donor BM 
taken from MSR1-deficient mice. As controls we used DM-hTAU chimeric mice in which the 
recipient BM was replaced by BM taken from non-transgene wild-type littermates. Two weeks 
following BM transfer, the mice were examined for cognitive performance using the T-maze task. 
We also tested WT chimeric mice that received either wild-type BM or BM from MSR1−/− mice 
(Fig. 1m, n). Following the behavioral test, each group of DM-hTAU chimeric mice was divided 
into two groups that received either anti-PD-L1 antibody or the control IgG2b, and 4 weeks later 
were tested again for their performance in the T-maze. Another group of non-chimeric DM-hTAU 
littermates that received IgG2b control was evaluated in parallel. Anti-PD-L1 antibody reversed 
cognitive loss in DM-hTAU chimeras harboring BM from wild-type mice, while DM-hTAU 
chimeras harboring MSR1−/− BM lost the ability to respond to PD-L1 blocking antibody and failed 
to show improved cognitive ability (Fig. 1n). 

Taken together, our results suggest that systemic immune activation, under conditions of 
chronic neuroinflammation, associated with murine models of tauopathies, facilitates the 
homing of monocyte-derived macrophages to the diseased brain and that these cells are key 
players in the anti-PD-L1 effect on disease modification. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349941/figure/Fig5/
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Figure 1: Monocyte-derived macrophages uniquely affect disease modification in PD-L1 
blockade in DM-hTAU mice. a, b Flow cytometry of splenocytes, CD44+CD62Llow effector 
memory T (TEM) cells, versus CD44+CD62Lhigh central memory T (TCM) cells in DM-hTAU 
mice, treated with 0.5 mg of anti- PD-L1 (n = 10) or IgG (n =11) (one-way ANOVA, Fisher’s exact 
test). c, d Flow cytometry of brains from anti-PD-L1-treated mice (n =10), and IgG-treated mice 
(n = 16) analyzed for CD45highCD11bhigh, pooled from two experiments. e–g Repeated experiment 
as in a, b using GFP-BM-chimeric DM-hTAU mice. e Flow cytometry of GFP-labeled cells gated 
from CD45highCD11bhigh cells, expressing Ly6C. f Quantitation of the number of 
GFP+CD45highCD11bhigh cells in anti-PD-L1 (n = 4), relative to IgG-treated mice (n = 6). g 
Representative projections of confocal z-axis stacks, showing colocalization of GFP+ cells 
(green) with IBA-1 (blue), in the cortex of DM-hTAUGFP/+ mice, treated with anti-PD-L1 antibody 
(arrowheads). Scale bar: 100 μm. h Representative confocal z-axis stacks, showing colocalization 
of GFP+ cells (green), IBA-1 (blue), and IL-10 (red) in the brains of anti-PD-L1-treated DM-
hTAUGFP/+ mice. Scale bar: 50 μm. i Sorted CD45highCD11bhigh from DM-hTAU mice treated 
with anti-PD-L1, analyzed by single-cell RNASeq. tSNE plot depicting 899 cells. Clusters 
indicated by color and number. j Average Unique Molecular Identifier counts for selected genes 
across the 12 clusters. k, l Representative projections of confocal z-axis stacks, showing 
colocalization of GFP+ cells (green) with MSR1 (red) and IBA-1 (blue) in the cortex (k), and of 
GFP+ cells (green) with MSR1 (red) in the hippocampus of DM-hTAUGFP/+ mice treated with anti-
PD-L1 antibody (l). Scale bars: 25 and 50 μm. m, n BM-chimeric DM-hTAU and WT mice (male 
and female) prepared using WT or MSR1−/− mice as BM donors. m T-maze task, 2 weeks after BM 
transplant, of WT >WT (n = 4), MSR1−/−>WT (n =5), WT> DM-hTAU (n = 8) and MSR1−/− > 
DM-hTAU (n = 8) chimeric mice. n The same mice were treated after the behavioral assessment 
in m with 1.5 mg of anti-PD-L1 antibody or IgG control antibody, and were tested again 1 month 
later for their performance in T-maze; nonchimeric IgG-treated DM-hTAU littermates were used 
as additional controls. Improved performance of WT > DM-hTAU treated with anti-PD-L1 (n =5) 
versus IgG-treated WT > DM-hTAU (n = 3) and IgG-treated nonchimeric DM-hTAU mice (n= 6). 
MSR1−/− > DM-hTAU mice failed to show beneficial effect following treatment with anti-PD-L1 
(n = 5), performing similarly to MSR1−/− > DM-hTAU treated with IgG (n = 3). In all panels, error 
bars represent mean ± s.e.m.; *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA and Fisherʼs 
exact test) 
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